Laplace Bedingung | Maths2Mind (2025)

Binomialverteilung

Die Binomialverteilung ist eine diskrete Verteilung, der ein mehrstufigen Zufallsexperiment zugrunde liegt. Sie entsteht, wenn man ein Bernoulli Experiment (einstufiges Experiment, welches nur 2 mögliche Ausgänge hat) n Mal gleich und unverändert wiederholt. Die Grundgesamtheit ändert sich also im Laufe der Wiederholungen nicht, d.h. es handelt sich um ein „Ziehen mit Zurücklegen“.

X heißt binomialverteilt mit den 2 Parametern n und p:

  • n … Anzahl der Ziehungen bzw. der Wiederholungen vom Zufallsexperiment, wobei n ∈ N
  • p ... Laplace-Wahrscheinlichkeit für das Auftreten vom Ereignis X, bei jedem einzelnen der n Versuche, mit 0 < p < 1
  • k ... Anzahl der Treffer, d.h. das Ereignis X tritt genau k mal ein, mit k=0, 1, 2, ... n
  • X ... Zufallsvariable bzw. Trefferzahl, d.h. das Ereignis X tritt genau, weniger, öfter mindestens,... k mal ein, mit k=0, 1, 2, ... n, wobei die Anzahl der unabhängigen Bernoulli-Versuche n beträgt und p die Erfolgswahrscheinlichkeit beschreibt.

Wahrscheinlichkeitsfunktion der Binomialverteilung

Die Wahrscheinlichkeitsfunktion der Binomialverteilung gibt die Wahrscheinlichkeit dafür an, dass es genau k Treffer gibt:

\(f\left( k \right) = P\left( {X = k} \right) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{n - k}}\) für k=0, 1, ..,n

Zur Erinnerung: Der Binomialkoeffizient errechnet sich zu: \(\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) = \dfrac{{n!}}{{k! \cdot \left( {n - k} \right)!}}\)

Bestimmung der Wahrscheinlichkeit einer Binomialverteilung bei unterschiedlichen Grenzen

Ungleichungen im Sprachgebrauch:

  • Weniger entspricht <
  • Höchstens entspricht \( \le \)
  • Mehr entspricht >
  • Mindestens entspricht \( \ge \)
genau k Treffer\(P(X = k) = \left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{\left( {n - k} \right)}}\)
höchstens k Treffer\(P\left( {X \le k} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \)
weniger als k Treffer\(P\left( {X < k} \right) = \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \)
mindestens k Treffer\(P\left( {X \ge k} \right) = 1 - P\left( {X \le k - 1} \right) = 1 - \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \)
mehr als k Treffer\(P\left( {X > k} \right) = 1 - P\left( {X \le k} \right) = 1 - \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \)
mindestens k aber höchstens m Treffer\(\begin{array}{l} P\left( {k \le X \ge m} \right) = P\left( {X \le m} \right) - P\left( {X \le k - 1} \right) = \\ = \sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} - \sum\limits_{i = 0}^{k - 1} {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right) \cdot {p^i} \cdot {{\left( {1 - p} \right)}^{n - i}}} \end{array}\)
Illustration zur Veranschaulichung

Wahrscheinlichkeitsfunktion der Binomialverteilung mit den Parametern n=10 Wiederholungen und einer Erfolgswahrscheinlichkeit von p=0,3

Laplace Bedingung

Wenn die Laplace Bedingung \(\sigma = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} > 3\) erfüllt ist,kann man die Binomialverteilung durch die Normalverteilung annähern.

Sigma-Umgebungen

Der Erwartungswert ist der Wert mit der größten Wahrscheinlichkeit. Links und rechts vom Erwartungswert gruppieren sich die restlichen binomialverteilten Wahrscheinlichkeiten. Wenn die Streuung groß genug ist, kann man die Binomialverteilung durch die Normalverteilung annähern. Um zu prüfen ob diese Näherung zulässig ist, verwendet man die Laplace Bedingung.

Radius der Sigma Umgebung (also Vielfachen der Standardabweichung):
\(\begin{array}{l} 1\sigma \buildrel \wedge \over = P\left( {\mu - \sigma \le X \le \mu + \sigma } \right) \approx 68\% \\ 2\sigma \buildrel \wedge \over = P\left( {\mu - 2\sigma \le X \le \mu + 2\sigma } \right) \approx 95,5\% \\ 3\sigma \buildrel \wedge \over = P\left( {\mu - 3\sigma \le X \le \mu + 3\sigma } \right) \approx 99,7\% \end{array}\)

Verteilungsfunktion der Binomialverteilung

Verteilungsfunktion der Binomialverteilung gibt die Wahrscheinlichkeit dafür an, dass es höchstens k Treffer gibt:

\(F\left( k \right) = P\left( {0 \le X \le k} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right)} \cdot {p^i} \cdot {\left( {1 - p} \right)^{n - i}}\)

Erwartungswert der Binomialverteilung

Der Erwartungswert eine Binomialverteilung, deren Zufallsvariable nur 2 Werte (Treffer / Niete) annehmen kann und deren Trefferwahrscheinlichkeit immer p ist, ergibt sich bei n unabhängigen Bernoulli-Versuchen aus dem Produkt von n und p.

\(E\left( X \right) = \mu = n \cdot p\)

Dabei handelt es sich um eine Vereinfachung der nachfolgenden Formel für den Erwartungswert einer diskreten Zufallsvariablen, die mehrere Werte annehmen kann.

Erwartungswert einer diskreten Verteilung

Der Erwartungswert einer diskreten Verteilung, deren Zufallsvariable mehrere Werte X=xi annehmen kann, die ihrerseits mit unterschiedlicher Wahrscheinlichkeit P(X=xi) vorkommen entspricht der Summe der Werte der Zufallsvariablen X=xi multipliziert mit der Wahrscheinlichkeit für das Eintreten von xi also P(X=xi).
\(E(X) = \sum\limits_{i = 1}^n {{x_i} \cdot P\left( {X = {x_i}} \right)} = \mu \)

\(P\left( E \right) = \dfrac{{{\text{Anzahl günstiger Fälle}}}}{{{\text{Anzahl mölicher Fälle}}}}\)

Varianz der Binomialverteilung

Die Varianz einer Binomialverteilung mit den Parametern n und p ist gegeben durch:

\({\sigma ^2} = Var\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)

Hierbei ist X eine Zufallsvariable, welche die Anzahl der Treffer in n unabhängigen Bernoulli-Versuchen mit Erfolgswahrscheinlichkeit p beschreibt.

Standardabweichung der Binomialverteilung

\(\sigma = \sqrt {Var(X)} = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} \)

Binomialverteilung→ Normalverteilung

Die Binomialverteilung kann bei großen Stichproben,also bei relativ hohem n, durch die Normalverteilung ersetzt werden.Wobei dann für die Normalverteilung - so wie bei der Binomialverteilung - wie folgt gilt:

  • Erwartungswert bei großem n: \(E\left( x \right) = \mu = n \cdot p\)
  • Standardabweichung bei großem n: \(\sigma = \sqrt {Var(x)} = \sqrt {n \cdot p \cdot \left( {1 - p} \right)} \)

Hat eine Zufallsvariable X eine Normalverteilung mit beliebigen μ und σ, so kann man die Werte der Normalverteilung mit \(z = \dfrac{{X - \mu }}{\sigma }\) in eine Standardnormalverteilung umrechnen.
Das zugehörige \(\Phi \left( {{z}} \right)\) entnimmt man anschließend der entsprechenden Tabelle für die Standardnormalverteilung.

Bei 2 zum Erwartungswert symmetrisch liegenden Wahrscheinlichkeiten kann man den Umstand, dass \(\left| {{z_{oG}}} \right| = \left| {{z_{uG}}} \right|\) ausnützen und aus speziellen Tabellen für die Standardnormalverteilung direkt den Wert für das Intervall D ablesen.

Laplace Bedingung | Maths2Mind (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Arline Emard IV

Last Updated:

Views: 6286

Rating: 4.1 / 5 (72 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Arline Emard IV

Birthday: 1996-07-10

Address: 8912 Hintz Shore, West Louie, AZ 69363-0747

Phone: +13454700762376

Job: Administration Technician

Hobby: Paintball, Horseback riding, Cycling, Running, Macrame, Playing musical instruments, Soapmaking

Introduction: My name is Arline Emard IV, I am a cheerful, gorgeous, colorful, joyous, excited, super, inquisitive person who loves writing and wants to share my knowledge and understanding with you.