Laplace Transform | Brilliant Math & Science Wiki (2024)

Sign up with Facebook or Sign up manually

Already have an account? Log in here.

Aareyan Manzoor, Dawar Husain, Tapas Mazumdar, and

  • Jenna Nieminen
  • Jimin Khim

contributed

The ​Laplace transform​ is an important tool in differential equations, most often used for its handling of non-hom*ogeneous differential equations. It can also be used to solve certain improper integrals like the Dirichlet integral.

Contents

  • Definition
  • Properties
  • Laplace Transform of some Popular Functions
  • Calculating Laplace Transform
  • Inverse Laplace Transform
  • The Convolution Theorem
  • Solving Differential Equation
  • Evaluating Improper Integrals

Definition

The Laplace transform maps a function of \(t\) to a function of \(s.\) We define

\[\mathcal{L}\left\{f\right\}\left(s\right) := \int\limits_{0}^{\infty} f(t)e^{-st}\,\text{dt}.\]

Properties

  1. \(\mathcal{L}\left\{f+g\right\}=\mathcal{L}\left\{f\right\}+\mathcal{L}\left\{g\right\}.\)

  2. \(\mathcal{L}\left\{cf\right\}=c\mathcal{L}\left\{f\right\}\), where \(c\) is a constant.

  3. \(\mathcal{L}\left\{f^{(n)}\right\}=s^n\mathcal{L}\left\{f\right\}-\displaystyle\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0).\) (This is proved later in the wiki.)

Laplace Transform of some Popular Functions

Note: Here, we are transforming \(f(t),\) a function of \(t,\) into \(F(s),\) a function of \(s.\)

\(f(t)\) \(\hspace{15mm}\)\(F(s)=\mathcal{L}\{f(t)\}\)
\(t^n\)\(\dfrac{\Gamma(n+1)}{s^{n+1}},\) where \(\Gamma\) is the gamma function.
\(e^{at}\)\(\dfrac{1}{s-a}\)
\(\sin(at)\)\(\dfrac{a}{s^2+a^2}\)
\(\cos(at)\)\(\dfrac{s}{s^2+a^2}\)
\(e^{at}f(t)\)\(F(s-a)\)
\(t^nf(t)\)\((-1)^n F^{(n)}(s)\)

We have

\[\begin{align}\mathcal{L}\{t^n\}&=\int_0^\infty t^n e^{-st} \text{dt}\\&=\dfrac{1}{s^{n+1}}\int_0^\infty x^n e^{-x} \text{dx} \qquad (\text{since } x=st\implies \text{dx}=s\text{dt})\\ &=\dfrac{\Gamma(n+1)}{s^{n+1}}.\ _\square\end{align}\]

We have

\[\begin{align}\mathcal{L}\{e^{at}\}&=\int_0^\infty e^{at}e^{-st} \text{dt}\\&=\int_0^\infty e^{at-st} \text{dt}\\&=\left. \dfrac{e^{at-st}}{a-s}\right|_0^\infty \\&=\dfrac{1}{s-a}.\ _\square\end{align}\]

We have

\[\begin{align}\mathcal{L}\{\sin(at)\}&=\mathcal{L}\left\{\dfrac{-i}{2}\big(e^{ait}-e^{-ait}\big)\right\}\\&=\dfrac{-i}{2}\left(\mathcal{L}\{e^{ait}\}-\mathcal{L}\{e^{-ait}\}\right)\\&=\dfrac{-i}{2}\left( \dfrac{1}{s-ai}-\dfrac{1}{s+ai}\right)\\&=\dfrac{a}{s^2+a^2}.\ _\square\end{align}\]

We have

\[\begin{align}\mathcal{L}\{\cos(at)\}&=\mathcal{L}\left\{\dfrac{1}{2}(e^{ait}+e^{-ait})\right\}\\&=\dfrac{1}{2}\left(\mathcal{L}\{e^{ait}\}+\mathcal{L}\{e^{-ait}\}\right)\\&=\dfrac{1}{2}\left( \dfrac{1}{s-ai}+\dfrac{1}{s+ai}\right)\\&=\dfrac{s}{s^2+a^2}.\ _\square\end{align}\]

We have

\[\mathcal{L}\left\{e^{at}f(t)\right\}=\int_0^\infty e^{at}f(t)e^{-st}\text{dt}=\int_0^\infty f(t)e^{-(s-a)t}\text{dt}=F(s-a).\]

What we have in the integral is \((s-a)\) instead of \(s\), so the function gets shifted. \(_\square\)

Consider

\[F(s)=\int_0^\infty f(t)e^{-st}\text{dt}.\]

Differentiate with respect to \(s\) \(n\) times to get

\[F^{(n)}(s)=\int_0^\infty (-t)^n f(t)e^{-st}\text{dt}\implies \mathcal{L}\{t^nf(t)\}=(-1)^n F^{(n)}(s).\ _\square\]

Calculating Laplace Transform

Some examples are shown here, which demonstrate how to calculate the Laplace transform of some given functions.

Find

\[\mathcal{L}\big\{5e^{6t}\sin(5t)+6e^{5t}\cos(7t)\big\}.\]

First, split it as two Laplace transforms:

\[5\mathcal{L}\big\{e^{6t}\sin(5t)\big\}+6\mathcal{L}\big\{e^{5t}\cos(7t)\big\}.\]

Now, we know \(\mathcal{L}\{\sin(5t)\}=\frac{5}{s^2+25}\) and \(\mathcal{L}\{\cos(7t)\}=\frac{s}{s^2+49}.\) Since the exponential function shifts the Laplace transform,

\[5\mathcal{L}\big\{e^{6t}\sin(5t)\big\}+6\mathcal{L}\big\{e^{5t}\cos(7t)\big\}=5\dfrac{5}{(s-6)^2+25}+6\dfrac{s-5}{(s-5)^2+49},\]

which is the answer. \(_\square\)

Find

\[\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}.\]

First,

\[\mathcal{L}\left\{t^1\dfrac{\sin(t)}{t}\right\}=-\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}'(s).\]

So,

\[\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}=-\int \dfrac{1}{s^2+1}\text{ds}=-\arctan(s)+C.\]

A neat trick to find the \(C\) is puttin \(s=\infty\); then the \(e^{-st}\) becomes zero and the integral also becomes zero, so we have

\[\lim_{s\to\infty}-\arctan(s)+C=0\implies C=\dfrac{\pi}{2}.\]

Therefore,

\[\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}=\dfrac{\pi}{2}-\arctan(s).\ _\square\]

Inverse Laplace Transform

If \(\mathcal{L}\{f(t)\}=F(s),\) then the inverse Laplace transform of \(F(s)\) is \(\mathcal{L}^{-1}\{F(s)\}=f(t)\).

We see some examples of how to calculate Laplace inverse.

Find

\[\mathcal{L}^{-1}\left\{\dfrac{5}{s^2-4s+3}\right\}.\]

We can ignore the constant (in this case 5) as it doesn't affect our Laplace transform much. We can factor the denominator into easy linear factors, so let's try that

\[ 5\mathcal{L}^{-1}\left\{\dfrac{1}{(s-1)(s-3)}\right\}=\dfrac{5}{2}\mathcal{L}^{-1}\left\{\dfrac{1}{s-3}-\dfrac{1}{s-1}\right\}.\]

We use the fact \(\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{at}\)(proved earlier), so this becomes

\[\dfrac{5}{2}e^{3t}-\dfrac{5}{2}e^t.\ _\square\]

Find

\[\mathcal{L}^{-1}\left\{\dfrac{2}{(s-9)^2+1}\right\}.\]

We first note that

\[\mathcal{L}^{-1}\left\{\dfrac{2}{s^2+1}\right\}=2\sin(t).\]

Since we are shifting the LHS by 9, we multiply by \(e^{9t}\) to get

\[\mathcal{L}^{-1}\left\{\dfrac{2}{(s-9)^2+1}\right\}=2e^{9t}\sin(t).\ _\square\]

Find

\[\mathcal{L}^{-1}\left\{\dfrac{2(s-1729)}{(s-2)^2+1}\right\}.\]

We can write this as

\[2\mathcal{L}^{-1}\left\{\dfrac{s-2}{(s-2)^2+1}\right\}-3454\mathcal{L}^{-1}\left\{\dfrac{1}{(s-2)^2+1}\right\}.\]

By doing what we did in the last problem, we have this to be equal to

\[2e^{2t}\cos(t)-3454e^{2t}\sin(t).\ _\square\]

The Convolution Theorem

The convolution theorem for Laplace transform is a useful tool for solving certain Laplace transforms. First, we must define convolution.

The convolution of two functions is given by

\[(f*g)(t)=\int_0^t f(t-\tau) g(\tau)\, \text{d}\tau.\]

Here is an example of convolution:

Find the convolution

\[(\sin*\cos)(t). \]

We use the definition

\[I=(\sin*\cos)(t) =\int_0^t \sin(t-\tau) \cos(\tau)\, \text{d}\tau.\]

We can use trigonometric identities to write this as

\[I=\int_{0}^{t} \big(\sin(t)\cos(\tau)-\cos(t)\cos(\tau)\big) \cos(\tau)\, \text{d}\tau=\sin(t)\int_{0}^{t} \cos^2(\tau)\, d\tau-\cos(t)\int_{0}^{t} \cos(\tau)\sin(\tau)\, d\tau.\]

Both integrals can be solved using double- or half-angle identities to get

\[\begin{align}I&=\dfrac{\sin(t)}{2}\int_{0}^{t} 1+\cos(2\tau)\, d\tau-\dfrac{\cos(t)}{2} \int_{0}^t \sin(2\tau)\, d\tau\\&=\dfrac{t\sin(t)}{2} +\dfrac{\sin(t)\sin(2t)}{4}-\dfrac{\cos(t)\big(1-\cos(2t)\big)}{4}.\end{align}\]

Plugging in double-angle identities, we will get the last two terms to cancel out, which gives us

\[I=\dfrac{t\sin(t)}{2}.\ _\square\]

This will be useful in Laplace transforms because of the convolution theorem:

The convolution theorem states that

\[\mathcal{L}(f*g)=\mathcal{L}(f)\mathcal{L}(g).\]

Start with

\[\begin{align}\mathcal{L}(f)\mathcal{L}(g)&=\int_0^\infty e^{-sx} f(x)\, dx \int_0^\infty e^{-sy} g(y)\, dy\\&= \int_0^\infty\int_0^\infty e^{-s(x+y)} f(x) g(y)\, dx\, dy. \end{align}\]

Here make a substitution:

\[\begin{align}1t=x+y \to y&=t-x\\\\dx\, dy &= dx\, dt\\t &= \Big|_0^\infty, x=\Big|_0^t. \end{align}\]

Then the integral turns into

\[ \mathcal{L}(f)\mathcal{L}(g)=\int_0^\infty\int_0^t e^{-st} f(x) g(t-x)\, dx\, dt = \mathcal{L}(f*g).\ _\square\]

Solving Differential Equation

We first start with the following theorem:

\[\mathcal{L}\big\{f^{(n)}(t)\big\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)\]

We see the base case at \(n=1\) is true by using integration by parts. So assume this is true for \(n=k,\) then

\[\mathcal{L}\big\{f^{(k)}(t)\big\}=s^{k}\mathcal{L}\{f\}-\sum_{i=1}^{k}s^{n-i}f^{(i-1)}(0).\]

Consider

\[\mathcal{L}\big\{f^{(k+1)}(t)\big\}=\int_0^\infty f^{(k+1)}(t)e^{-st}\text{dt}.\]

Now consider \(\begin{cases} v'=f^{(k+1)}(t)\implies v= f^{(k)}(t)\\ u=e^{-st}\implies u'=-se^{-st}\end{cases}\), then

\[\begin{align}\int_0^\infty f^{(k+1)}(t)e^{-st}\text{dt}&=\left. e^{-st}f^{(k)}(t)\right|_0^\infty+s\int_0^\infty f^{(k)}(t)e^{-st}\text{dt}\\\\\mathcal{L}\big\{f^{(k+1)}(t)\big\}&=f^{(k)}(0)+s\mathcal{L}\big\{f^{(k)}(t)\big\}\\&=s^{k+1}\mathcal{L}\{f\}-\sum_{i=1}^{k+1}s^{n-i}f^{(i-1)}(0)\end{align}\]

by induction. Hence proved. \(_\square\)

How do we use this? FIrst note that in a simple form \(\mathcal{L}\{f'(t)\}=s\mathcal{L}\{f(t)\}-f(0)\) and \(\mathcal{L}\{f''(t)\}=s^2\mathcal{L}\{f(t)\}-sf(0)-f'(0)\) as our examples are mainly \(2^\text{nd}\) ODEs.

Solve the \(2^\text{nd}\) ODE

\[f''+2f'+2f=\sin(t)\]

with \(f(0)=0\) and \(f'(0)=0.\)

First take the Laplace transform of both sides:

\[\begin{align}\mathcal{L}\{f''(t)\}+2\mathcal{L}\{f'(t)\}+2\mathcal{L}\{f(t)\}&=\dfrac{1}{s^2+1}\\(s^2+2s+2)\mathcal{L}\{f(t)\}-(2s+1)f(0)-f'(0)&=\dfrac{1}{s^2+1}\\\\\mathcal{L}\{f(t)\} &=\dfrac{1}{(s^2+1)(s^2+2s+2)}\\&=\dfrac{1}{5(s^2+1)}-\dfrac{2s}{5(s^2+1)}+\dfrac{2s}{5\big((s+1)^2+1\big)}+\dfrac{3}{5\big((s+1)^2+1\big)} \\&=\dfrac{1}{5(s^2+1)}-\dfrac{2s}{5(s^2+1)}+\dfrac{2(s+1)}{5\big((s+1)^2+1\big)}-\dfrac{2}{5\big((s+1)^2+1\big)}+\dfrac{3}{5\big((s+1)^2+1\big)} \\&=\dfrac{1}{5(s^2+1)}-\dfrac{2s}{5(s^2+1)}+\dfrac{2(s+1)}{5\big((s+1)^2+1\big)}+\dfrac{1}{5\big((s+1)^2+1\big)}.\end{align}\]

Taking Laplace inverse,

\[f(t)=\dfrac{\sin(t)-2\cos(t)+2e^{-t}\cos(t)+e^{-t}\sin(t)}{5}.\ _\square\]

Evaluating Improper Integrals

\[\int_0^\infty \dfrac{f(t)}{t}e^{-at}\text{dt}=\int_a^\infty \mathcal{L}\{f(t)\}(s)\text{ds} \implies (\text{if } a=0)\int_0^\infty \dfrac{f(t)}{t}\text{dt}=\int_0^\infty \mathcal{L}\{f(t)\}(s)\text{ds}\]

Consider the right integral:

\[\int_{0}^{\infty} \mathcal{L} \{f(t)\}(s) ds = \int_{s=0}^{\infty} \int_{t=0}^\infty f(t) e^{-st} dt.\]

Changing the order of integration and performing inner integration on variable \(s,\) we get the result

\[ \int_{t=0}^{\infty} f(t) \int_{s=0}^\infty e^{-st} dt= \int_0^\infty \frac{f(t)}{t} dt.\ _\square \]

So let's see how to apply this:

Prove the Dirichlet integral

\[\int_0^\infty \dfrac{\sin(t)}{t}\text{dt}=\dfrac{\pi}{2}.\]

This famous integral can be proved in one line:

\[\int_0^\infty\frac{ \color{blue}{\sin(x)} }{x}\, dx=\int_{0}^{\infty}\mathcal{L}\{ {\color{blue}{\sin(x)}} \}(s)\; ds=\int_{0}^{\infty}\frac{1}{s^{2}+1}\, ds=\arctan s\bigg|_{0}^{\infty}=\dfrac{\pi}{2}.\ _\square\]

Even without this, we can solve some integrals like:

Find

\[\int_0^\infty t^{1729}\sin(t)e^{-t}\text{dt}.\]

First,

\[\begin{align}\int_0^\infty t^{1729}\sin(t)e^{-t}\text{dt}&=\mathcal{L}\big\{t^{1729}\sin(t)\big\}(1)\\&=\left.\dfrac{(-1)^{1729}}{2i} \dfrac{d^{1729}}{ds^{1729}} \dfrac{1}{s+i}-\dfrac{1}{s-i}\right|_{s=1}\\&=\left. \dfrac{-1}{2i} \left( \dfrac{-1729!}{(s-i)^{1730}}-\dfrac{-1729!}{(s+i)^{1730}}\right)\right|_{s=1}\\&=\dfrac{1729!}{2^{865}}.\end{align}\]

So, a seemingly difficult integral that would have taken forever with tabular integration is solved in less than 5 minutes with Laplace transform. \(_\square\)

Cite as: Laplace Transform. Brilliant.org. Retrieved from https://brilliant.org/wiki/laplace-transform/

Laplace Transform | Brilliant Math & Science Wiki (2024)
Top Articles
Shanti-Mantra: Finden Sie Ruhe und Frieden für Ihre Seele
Om Shanti Mantra: Meaning, Benefits and Use • Yoga Basics
Will Byers X Male Reader
Mchoul Funeral Home Of Fishkill Inc. Services
Dairy Queen Lobby Hours
Walgreens Pharmqcy
Pnct Terminal Camera
The Atlanta Constitution from Atlanta, Georgia
Blackstone Launchpad Ucf
Free VIN Decoder Online | Decode any VIN
The Best English Movie Theaters In Germany [Ultimate Guide]
2021 Tesla Model 3 Standard Range Pl electric for sale - Portland, OR - craigslist
Fire Rescue 1 Login
Robot or human?
Jc Post News
VMware’s Partner Connect Program: an evolution of opportunities
How Much Are Tb Tests At Cvs
Lake Nockamixon Fishing Report
How pharmacies can help
No Hard Feelings - Stream: Jetzt Film online anschauen
Zack Fairhurst Snapchat
Canvasdiscount Black Friday Deals
Craigslist Apartments Baltimore
Living Shard Calamity
Why Are Fuel Leaks A Problem Aceable
Skidware Project Mugetsu
8002905511
Stockton (California) – Travel guide at Wikivoyage
Valley Craigslist
Free Tiktok Likes Compara Smm
Elanco Rebates.com 2022
Evil Dead Rise - Everything You Need To Know
Ghid depunere declarație unică
Warren County Skyward
Metra Union Pacific West Schedule
Ket2 Schedule
Empire Visionworks The Crossings Clifton Park Photos
My.lifeway.come/Redeem
How To Paint Dinos In Ark
„Wir sind gut positioniert“
Columbia Ms Buy Sell Trade
Gary Lezak Annual Salary
888-822-3743
Actor and beloved baritone James Earl Jones dies at 93
Linkbuilding uitbesteden
Chubbs Canton Il
Xre 00251
Joblink Maine
Nope 123Movies Full
Strange World Showtimes Near Marcus La Crosse Cinema
Strange World Showtimes Near Century Federal Way
Ubg98.Github.io Unblocked
Latest Posts
Article information

Author: Kieth Sipes

Last Updated:

Views: 6276

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Kieth Sipes

Birthday: 2001-04-14

Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

Phone: +9663362133320

Job: District Sales Analyst

Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.